p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.24D4, C4⋊C4⋊32D4, C4.88(C4×D4), C4⋊1D4⋊11C4, C42⋊11(C2×C4), (C2×D4).74D4, C4.7(C4⋊D4), C42⋊6C4⋊23C2, C2.5(D4⋊4D4), C23.562(C2×D4), C22.11C24⋊1C2, C22.101C22≀C2, C23.37D4⋊22C2, C23.10(C22⋊C4), (C2×C42).286C22, (C22×C4).685C23, (C22×D4).20C22, C42⋊C2.22C22, C2.26(C23.23D4), (C2×M4(2)).182C22, C22.50(C22.D4), (C2×D4)⋊8(C2×C4), (C2×C4⋊1D4).4C2, (C2×C4).57(C4○D4), (C2×C4.D4)⋊16C2, (C2×C4).1006(C2×D4), (C2×C4).187(C22×C4), C22.42(C2×C22⋊C4), SmallGroup(128,619)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.24D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, ac=ca, ad=da, eae-1=faf=acd, bc=cb, bd=db, be=eb, bf=fb, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef=be3 >
Subgroups: 580 in 222 conjugacy classes, 56 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C4.D4, D4⋊C4, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C4⋊1D4, C4⋊1D4, C2×M4(2), C22×D4, C22×D4, C42⋊6C4, C2×C4.D4, C23.37D4, C22.11C24, C2×C4⋊1D4, C24.24D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, D4⋊4D4, C24.24D4
(1 13)(2 10)(3 11)(4 16)(5 9)(6 14)(7 15)(8 12)
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)
(2 6)(4 8)(10 14)(12 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 3)(2 10)(4 16)(5 7)(6 14)(8 12)(9 11)(13 15)
G:=sub<Sym(16)| (1,13)(2,10)(3,11)(4,16)(5,9)(6,14)(7,15)(8,12), (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,3)(2,10)(4,16)(5,7)(6,14)(8,12)(9,11)(13,15)>;
G:=Group( (1,13)(2,10)(3,11)(4,16)(5,9)(6,14)(7,15)(8,12), (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (2,6)(4,8)(10,14)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,3)(2,10)(4,16)(5,7)(6,14)(8,12)(9,11)(13,15) );
G=PermutationGroup([[(1,13),(2,10),(3,11),(4,16),(5,9),(6,14),(7,15),(8,12)], [(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12)], [(2,6),(4,8),(10,14),(12,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,3),(2,10),(4,16),(5,7),(6,14),(8,12),(9,11),(13,15)]])
G:=TransitiveGroup(16,302);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | C4○D4 | D4⋊4D4 |
kernel | C24.24D4 | C42⋊6C4 | C2×C4.D4 | C23.37D4 | C22.11C24 | C2×C4⋊1D4 | C4⋊1D4 | C4⋊C4 | C2×D4 | C24 | C2×C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 8 | 4 | 2 | 2 | 4 | 4 |
Matrix representation of C24.24D4 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 15 | 0 |
0 | 0 | 16 | 0 | 16 | 16 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 16 | 1 | 0 | 16 |
G:=sub<GL(6,GF(17))| [0,16,0,0,0,0,16,0,0,0,0,0,0,0,16,16,0,1,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,16,16,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,16,16,0,0,0,0,0,0,1,0,0,0,15,16,1,1,0,0,0,16,0,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,16,0,0,15,16,1,1,0,0,0,0,1,0,0,0,0,0,0,16] >;
C24.24D4 in GAP, Magma, Sage, TeX
C_2^4._{24}D_4
% in TeX
G:=Group("C2^4.24D4");
// GroupNames label
G:=SmallGroup(128,619);
// by ID
G=gap.SmallGroup(128,619);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,1018,521,248,2804,1411,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=f*a*f=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=b*e^3>;
// generators/relations